

#### 14.1 Electronic vs electrical devices Electronic Electrical

- Made with semiconductors (silicon)
- Tiny & need low-intensity so that information can be controlled.
- Component examples
- Diodes
- Transistors
- Made with conductors (metals (copper) & alloys)
   Larger & powerful circuits & motors.
- Component examples
  - Wires
  - Switches
  - Fuses
- Computers, phones

Toaster, stove Write

| 14.2 Electrical Circ                                                                                                                               | uits                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ■ <u>CONVENTIONAL CURRENT</u> □ Flows from + to − ■ <u>ELECTRON FLOW</u> □ Flows from − to +                                                       | Electric charge moves from the positive (surplus) side of the battery to the negative (deficiency) side. |
| <ul> <li>Circuit diagrams place their compo<br/>follow the direction of <u>conventiona</u></li> <li>Make a table "Circuit Symbols" with</li> </ul> | il current!                                                                                              |
| <ul><li>Component</li><li>Symbol</li><li>Function</li></ul>                                                                                        | Please<br>Write                                                                                          |

| Component<br>(part) | Symbol (s)   | Function (how it controls current) |
|---------------------|--------------|------------------------------------|
| We will fill this   | up as we go! | Leave 20 rows please ©             |
|                     |              |                                    |

# 14.3 Power Supplies

- Provide the energy to cause current to move thru a circuit.
- Two types of current:
- □ DC = Direct Current
  - Electrons move continuously in one direction.
  - More powerful
  - Eg. battery
- □ AC = Alternating Current
- Electrons move back and forth.
- Easier to transport.
- Eg. From power plants



Please

Write

# Symbols for power supplies please add to table

Component:

Symbol

Function

Battery

**Power Supply** 

Alternating current AC

Power Supply

Direct current DC



Power Supply

Photoelectric Cell

# AC electrical generators

Please Write

- Turns mechanical energy into electrical energy.
  - □ Makes AC current!
  - Using a rotating magnetic field with a stationary armature
  - Or I am an armature ->
- or rotating armature with a stationary magnetic
- field

  Driven by:
- Combustion engine = Alternator (in a car)
- □ Permanent magnets = Magneto
- Steam engine (power plant) = Turbo-alternators

|                                            | Please<br>Write          |                                             |  |
|--------------------------------------------|--------------------------|---------------------------------------------|--|
|                                            | Advantages               | Disadvantages                               |  |
| Battery (chemical E → electrical E)        | Portable                 | Must be replaced<br>Environmental<br>Hazard |  |
| Electrical Outlet                          | Stable source            | Close proximity                             |  |
| Photovoltaic cell<br>sun E → electrical E) | Portable<br>Long lasting | Weather dependan<br>Expensive               |  |

# 14.4 Conduction, insulation & protection

P 464 - 468

## Conductors:

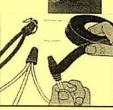
#### Please Write

- Are materials that allow the movement of current through a circuit.
- Conduction: is the movement of current through a conductor (copper wire).
- Ex:
  - □ Copper,
- aluminum,
- □ Silver,
- optical fibers.

#### Printed Circuits:

# **Please Write**

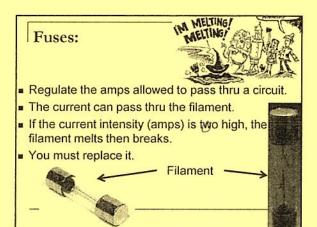
- Board = thin plastic sheet.
- 2. Cover with a thin copper sheet.
- 3. A circuit is etched in.
- 4. Extra copper is removed. (by leaching)
- 5. Electric & electronic components are then soldered on.


# Insulation:

#### **Please Write**

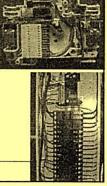
- Function: to prevent current flow!
- Allows current to stay within the wire and reach it's destination.
- Prevents:
- Injury to people
- □ Short circuits
- Ex: Ceramics & plastics

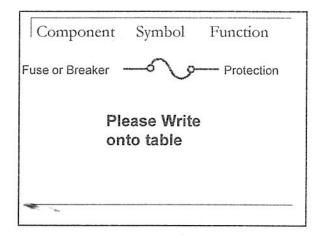


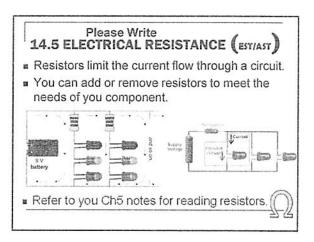


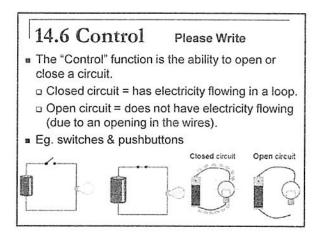


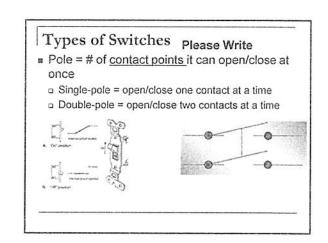

# **Protection:**

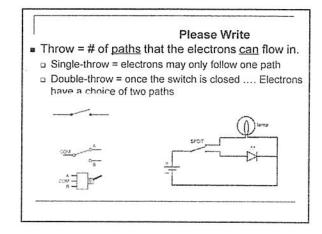

#### **Please Write**


- Components that stop current if there is a short circuit or a power surge.
- Ex:
  - □ Fuse
  - Circuit breakers

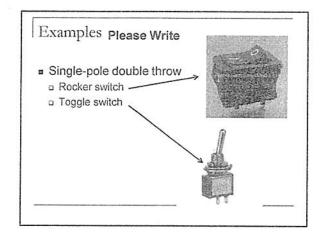


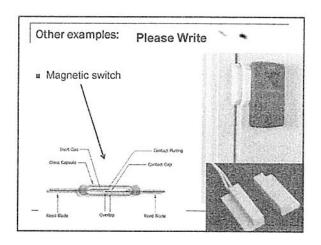


## Breaker

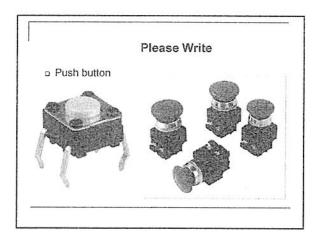

- How it works:
  - When the current intensity gets too high....
  - The bimetallic strip heats up & bends.
  - As it bends the connection is broken and snaps to the off position.
  - You then go to your breaker panel and reset the switch to on.

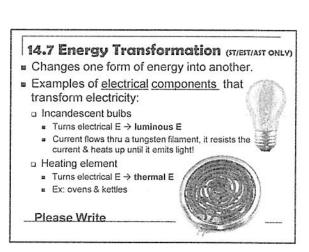




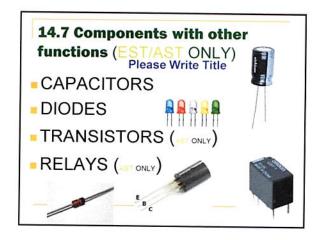



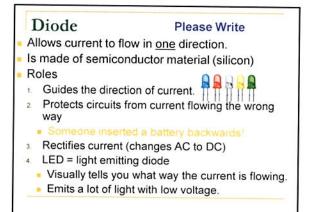



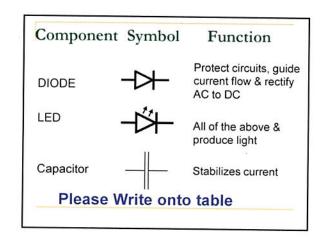

| Component                       | Symbol      | Function |
|---------------------------------|-------------|----------|
| Single-pole Single-throw switch | 01 -0 0     | Control  |
| Double-pole Single-throw switch |             | Control  |
| Single-pole Double-throw switch | <b>二</b> /: | Control  |
| Double-pole Single-throw switch |             | Control  |

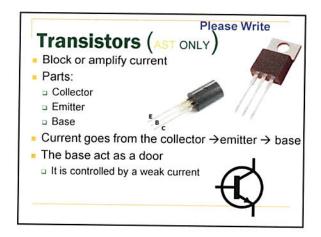










□ Piezoelectric crystals
■ Turns electrical E → mechanical E
(or sound E)
■ Current causes the crystals to vibrate
■ Ex: watches & speakers
□ Electromagnets
■ Turns electrical E → magnetic E
■ Current flows through a coil creating a magnetic field
■ Ex: old tape recorders & electromagnets

